
TIME 2 CODE Python Programming guide

Levels 1-8 1

text

Examples:

This is a comment

Hash symbol: A comment.

Comments are ignored by the computer and discarded when a

program is translated into machine code. They are used by

programmers to explain the purpose of sections of code. This is

helpful when you return to a program after a period of time, or when

you work in teams.

Comments are typically used:

• At the beginning of a program to explain its purpose.

• Before each subprogram: def

• Before each selection statement: if, else, match, case.

• Before each iteration: for, while.

• To explain difficult to comprehend code.

• To remind the author why unusual approaches have been

taken.

Associated keywords: def, if, else, match, case, while

TIME 2 CODE Python Programming guide

Levels 1-8 2

ABS

variable = abs(parameter)

Examples:

x = abs(-5)

x = abs(y)

Function: Returns an absolute value of the parameter.

The absolute value is a positive value. For example, the absolute value

of -6 is 6. This function is useful for turning a negative number into a

positive number.

It can also be useful to swap a number from positive to negative or

negative to positive. This can be achieved with x = -x.

TIME 2 CODE Python Programming guide

Levels 1-8 3

APPEND

list.append(parameter)

Examples:

mylist.append("Dave")

Method: Adds the parameter to a list.

The example above adds the string "Dave" to the list called mylist. The

parameter can be a value, a variable or a list. Append means to add to

the end, so the new item is always added to the end of the list and

becomes the last item.

You can overwrite existing elements of a list by referring to their

index. E.g. list[2] = "Dave" will replace what is currently stored

in index 2.

Associated keywords: insert, pop, remove

TIME 2 CODE Python Programming guide

Levels 1-8 4

CHR

variable = chr(integer)

Examples:

character = chr(65)

Function: Returns the character from a denary ASCII code.

All characters, including letters, numbers and symbols stored in strings

are actually stored in binary by the computer. The American Standard

Code for Information Interchange (ASCII) is one standard for encoding

characters in binary. To make it easier for humans these binary codes

can also be output in denary.

For example:

65 = "A"

66 = "B"

67 = "C" etc.

Note that uppercase and lowercase letters have different codes.

Associated keywords: ord

TIME 2 CODE Python Programming guide

Levels 1-8 5

CLOSE

pipe.close()

Examples:

my_file.close()

Method: Closes the file pointed to by the pipe.

It is considered good practice to close a file as soon as possible before

further processing takes place. Not only does this release the file for

other code that may require the file, but it can in rare cases prevent

the file becoming corrupted.

Associated keywords: open, read, readline, write

TIME 2 CODE Python Programming guide

Levels 1-8 6

COPY

newlist = list.copy()

Examples:

mylist = oldlist.copy()

Method: Copies all the items in one list into another.

Note you cannot use mylist = oldlist with lists as you would

with variables because mylist will become a pointer to oldlist in

memory. This means you will still be updating the same list if you

don’t use the copy method.

TIME 2 CODE Python Programming guide

Levels 1-8 7

DEF

def identifier(parameters):

Examples:

def square(x):

 x = x * x

 return x

Command: Defines a new subprogram. Subprograms are also called

subroutines.

Code must be indented inside the subprogram. You cannot use spaces

in the identifier name of the subprogram. It is common to use

underscores to separate words in the name of the subprogram

instead.

Don't forget the colon at the end of this command.

Subprograms can be procedures that do not return a value or

functions that do return a value. Procedures are used to structure a

program into smaller more manageable parts. This is known as

problem decomposition. Functions are used to create reusable

program components. Subprograms avoid unnecessary code

duplication and make the code easier to read which also makes

finding errors in code, called debugging easier.

Associated keywords: return

TIME 2 CODE Python Programming guide

Levels 1-8 8

FIND

variable = string.find(string)

Examples:

i = "Hello World".find("W")

Method: Returns the index of where a string can be found inside

another string.

In the example above, i is assigned to be 6, the index of the character

"W" in the string, "Hello World". Like items in a list, each character of

a string has an index. Strings are zero-indexed which means the first

character is stored at index 0. Remember that a space is also a

character.

The method only returns the first occurrence of the search string. If

the string cannot be found -1 is returned.

If you want to find more than one occurrence in the string, you should

consider using a search algorithm instead. For example, a linear

search can use a for loop to iterate over all the characters in a string.

Associated keywords: replace

TIME 2 CODE Python Programming guide

Levels 1-8 9

FLOAT

variable = float(parameter)

Examples:

x = float("5")

x = float(6)

x = float(y)

Function: Casts a parameter to a floating point number.

Different types of data are stored in different ways by the computer.

Inputs taken from the keyboard are always sequences of

alphanumeric characters called strings. These sequences of characters

are stored as numbers by the computer using a standard such as ASCII

or Unicode. The input string "5.6" (strings are qualified by quotes) is

stored as the numbers 53, 46, 54. To do calculations on the input, it

first needs to be converted from a string to a number, or from 53, 46,

54 to 5.6. This is known as casting.

Whole numbers with no fractional part are known as integers.

Numbers with a fractional part (decimal places) are known as floating

points, floats, real numbers or reals.

A run-time error will occur if the parameter cannot be cast to a float.

Associated keywords: int, str

TIME 2 CODE Python Programming guide

Levels 1-8 10

FOR

for variable in sequence:

 indented code

Examples:

for counter in range(5):

 print(counter)

for counter in range(5, 0, -1):

 print(counter)

for item in mylist:

 print(item)

Command: Repeats the indented section of code a given number of

times.

The sequence can be a set of numbers defined by the range command

or the elements of a list.

Code to be executed must be indented. This is often the source of

many logic errors, so check your code is indented correctly.

Repeated sections of code are known as iterations or loops. Use a for

command when you want to repeat a known number of times, for

example to iterate over all the items in a list.

It is good practice to comment before this command to explain the

purpose of the iteration.

TIME 2 CODE Python Programming guide

Levels 1-8 11

It is possible to include another for command within an indented

section. This is known as nesting.

Although the functionality of a for command can be replicated with a

while command it is usually considered good practice to use a for loop

for finite iterations.

As a for command will always iterate a finite number of times, to

maximise the efficiency of an algorithm you should consider if a while

loop or an alternative command could be used instead to terminate

the iteration early. For example, if you need to find or consider all the

items in a list then a for command is ideal. If you only need to find the

first occurrence consider using the index method instead.

It is possible to terminate a for loop before it is complete with a break

command, but this is not considered good practice because it creates

more than one exit point for the command which increases the

complexity of testing. The use of break should usually be avoided.

Associated keywords: #, range, in, while

TIME 2 CODE Python Programming guide

Levels 1-8 12

FORMAT

"string {parameter index: format}".format(parameters)

Examples:

name = "Dave"

age = 18

print("Hello {0}. You are {1} years

old.".format(name, age))

value = 4.56754

print("{0:.2f}".format(3.56756))

Method: Formats a string for output.

As an alternative to concatenation, string formatting provides more

options to manipulate variables used in the output.

The parameters are the values to be used, separated with a comma.

Each parameter is referred to by an index within the string. E.g.

"{0} £{1}".format(a, b)

{0} is the first parameter a, {1} is the second parameter, b. The indexes

are replaced with the parameters in the string output.

label = "Price"

price = 2.99

print("{0} £{1}".format(label, price))

TIME 2 CODE Python Programming guide

Levels 1-8 13

Would result in the output:

Price £2.99

String formatting is often used to output a number to a number of

decimal places. For example. 2.99183 to two decimal places is 2.99.

This is achieved with the format .2f

E.g.

price = 2.99183

print("Price: £{0:.2f}".format(price))

Note that this does not perform any rounding, it truncates the output

to two decimal places.

Associated keywords: print

TIME 2 CODE Python Programming guide

Levels 1-8 14

IF

If condition:

 indented code

elif condition:

 indented code

else:

 indented code

Examples:

If x == y:

 print("The value of x is the same as y")

elif x < y:

 print("The value of x is less than y")

else:

 print("The value of x is greater than y")

Command: Selects which code branch to execute next depending on

the outcome of a condition.

The condition requires two variables or constants to be compared

with mathematical or logic operators (see appendix 1). More than one

condition can be combined with logic operators and brackets can be

used to group conditions.

TIME 2 CODE Python Programming guide

Levels 1-8 15

E.g.

if ((x > y) and (x > 6)):

Note that you should not use if x > y > 6 as it will not work as

you expect. Instead, be explicit about which two items of data are

being compared in each condition.

The result of an if command is always either True or False.

That means you can also use a shorthand for Boolean conditions. E.g.

if valid: is the same as if valid == True:

if not valid: is the same as if valid == False:

The elif section is an optional part of the command to include

alternative conditions. You can include as many additional elif sections

as you need but consider using the command match instead if you

require more than one elif section.

The else section is an optional part to execute if none of the

conditions are met, including those in elif sections.

Code to be executed for each section must be indented. This is often

the source of many logic errors, so check your code is indented

correctly.

It is good practice to comment each section of this command to

explain the purpose of each condition.

It is possible to include another if command within an indented

section. This is known as nesting.

Associated keywords: #, match, in

TIME 2 CODE Python Programming guide

Levels 1-8 16

IMPORT

import library

Examples:

import random

import math, os, time, turtle

Command: Includes additional commands in your program.

Python includes a basic set of commands, but these can be extended

by including additional functions provided in libraries.

For example, functions associated with random number generation

are included in a library called random. Functions associated with

more advanced mathematics are included in the math library. File and

folder manipulation in the os library and turtle graphics in the

turtle library. These are just a few of the common libraries, but

there are many more.

Libraries speed up programming by using code that has been created

by other people with expertise and should already be error free.

Any additional commands that your program requires will need to be

translated into machine code by the computer when your program

runs, so to reduce memory requirements and redundant code

programmers only import the libraries that their program needs.

It is possible to create your own library of functions.

TIME 2 CODE Python Programming guide

Levels 1-8 17

IN

variable in list

Examples:

if "Dave" in ["Craig", "Dave"]

if x in y

while x in y

Command: Returns whether a constant or a variable is contained

within a list.

The in command is very useful for checking if an item exists within a

list and negates the need for a searching algorithm. It can be used as a

condition for selection and iteration commands.

Returns True if the variable is in the list or False if not.

Associated keywords: if, while

TIME 2 CODE Python Programming guide

Levels 1-8 18

INDEX

variable = list.index(parameter)

Examples:

i = mylist.index("C")

Method: Returns the index of where the parameter can be found in a

list.

For example, if a list contained: ["A", "B", "C", "D"] then

mylist.index("C") would return 2 because the item "C" is stored

at index 2. Remember that lists are zero-indexed which means the

first item is stored at index 0. The method only returns the first

occurrence of an item in a list.

If the item is not in the list a run-time error will occur so you should

only use this method after the condition: if parameter in

mylist is True.

If you want to find more than one occurrence in the list, you should

consider using a search algorithm instead. For example, a linear

search can use a for loop to iterate over all the items in a list.

Associated keywords: find

TIME 2 CODE Python Programming guide

Levels 1-8 19

INPUT

variable = input(parameter)

Examples:

surname = input("Enter your surname: ")

prompt = "Enter your forename: "

forename = input(prompt)

Function: returns an input from the keyboard.

Inputs from the keyboard allow user interaction with your program.

Inputs are always sequences of alphanumeric characters called strings

terminated when the user presses the enter key.

The parameter prompt to the user is optional but informs the user

what data they are expected to enter.

It is common to add an extra space at the end of the prompt to

separate the prompt and the input.

Remember to do calculations on the input, the input data will need to

be cast to an integer or float.

TIME 2 CODE Python Programming guide

Levels 1-8 20

INSERT

list.insert(index, parameter)

Examples:

mylist.insert(2, "Dave")

Method: Inserts the parameter into a list.

The example above inserts the string "Dave" into the list called mylist

at index 2. The indexes of the existing items at index 2 and above are

incremented. The parameter can be a value, a variable or a list.

You can overwrite existing elements of a list by referring to their

index. E.g. list[2] = "Dave" will replace what is currently stored

in index 2.

Associated keywords: append, pop, remove

TIME 2 CODE Python Programming guide

Levels 1-8 21

INT

variable = int(parameter)

Examples:

x = int("5")

x = int(6.5)

x = int(y)

Function: Casts a parameter to an integer.

Different types of data are stored in different ways by the computer.

Inputs taken from the keyboard are always sequences of

alphanumeric characters called strings. These sequences of characters

are stored as numbers by the computer using a standard such as ASCII

or Unicode. The input string "5" (strings are qualified by quotes) is

stored as the number 53. To do calculations on the input, it first needs

to be converted from a string to a number, or from 53 to 5. This is

known as casting.

Whole numbers with no fractional part are known as integers.

Numbers with a fractional part (decimal places) are known as floating

points, floats, real numbers or reals. Using int to cast a float to an

integer also removes the fractional component.

A run-time error will occur if the parameter cannot be cast to an

integer.

Associated keywords: float, str

TIME 2 CODE Python Programming guide

Levels 1-8 22

ISALPHA

string.isalpha()

Examples:

if surname.isalpha():

 print("The surname is valid")

else:

 print("The surname is invalid")

Method: returns True if the string only contains the letters a to z or A

to Z

Can be useful for validation routines.

Associated keywords: isdigit, isalnum

TIME 2 CODE Python Programming guide

Levels 1-8 23

ISALNUM

string.isalnum()

Examples:

if password.isalnumn():

 print("Password is not strong enough")

Method: returns True if the string only contains the letters a to z or A

to Z or the digits 0 to 9.

Can be useful for validation routines.

Associated keywords: isdigit, isalpha

TIME 2 CODE Python Programming guide

Levels 1-8 24

ISDIGIT

string.isdigit()

Examples:

if not month.isdigit():

 print("The month is invalid")

Method: returns True if all the characters in the string are the digits 0

to 9. If this is the case the string can be cast to an integer or float.

Can be useful for validation routines.

Associated keywords: isalpha, isalnum, int, float

TIME 2 CODE Python Programming guide

Levels 1-8 25

ISLOWER

string.islower()

Examples:

if surname.islower():

Method: returns True if all the characters in the string are in

lowercase (small letters) or False if not.

Can be useful for validation routines.

Associated keywords: isupper, lower, upper

TIME 2 CODE Python Programming guide

Levels 1-8 26

ISUPPER

string.isupper()

Examples:

if surname.isupper():

Method: returns True if all the characters in the string are in

uppercase (capital letters) or False if not.

Can be useful for validation routines.

Associated keywords: islower, lower, upper

TIME 2 CODE Python Programming guide

Levels 1-8 27

JOIN

variable = string.join(list)

Examples:

mylist = ["Hello", "World"]

mystring = "-".join(mylist)

Method: Concatenates all items in a list into a single string variable

separated by a chosen string.

In the example above, mystring would be assigned, "Hello-World".

Each element of mylist has been joined together separated by a

hyphen.

Be careful when using escape characters as concatenators. For

example, mystring = "\".join(mylist) will generate a syntax

error.

Join can be useful for creating the output for a single record from

multiple fields for a CSV file, where each item is separated by a

comma.

Associated keywords: split

TIME 2 CODE Python Programming guide

Levels 1-8 28

LEN

variable = len(parameter)

Examples:

x = len("A", "B", "C")

x = len(mylist)

Function: Returns the number of indexes in the parameter.

Remember the number of indexes includes the first index which is

index 0.

The parameter can be a string, in which case the number of characters

is returned, or a list in which case the number of elements is returned.

TIME 2 CODE Python Programming guide

Levels 1-8 29

LOWER

Variable = string.lower()

Examples:

email = myaddress.lower()

Method: returns the string in lowercase (small letters).

Associated keywords: islower, isupper, upper

TIME 2 CODE Python Programming guide

Levels 1-8 30

MATCH

match variable:

 case value:

 indented code

 case _:

 indented code

Examples:

match day_name:

 case "Thu" | "Fri" | "Sat":

 print("Open 10-5pm")

 case "Sun":

 print("Open 11-3pm")

 case _:

 print("Closed.")

Command: An alternative to the if/elif/else structure that is used

when there are more than two outcomes. Match is considered a

better command to use because it is more readable for multiple

values. Don’t forget the colon after match and each case.

Possible values can be separated with pipe characters: | (this is the

equivalent to the logical OR operator). You can have as many case

statements as you need, and each one should include a comment.

TIME 2 CODE Python Programming guide

Levels 1-8 31

case _: is the equivalent to else and captures any value that was

not matched.

Note the match command is only supported in Python 3.10+

Associated keywords: #, if

TIME 2 CODE Python Programming guide

Levels 1-8 32

MATH.CEIL

variable = math.ceil(parameter)

Examples:

x = 65.23

x = math.ceil(x)

Function: Rounds a number up to the nearest integer.

In the example above x would be assigned 66 as 0.5 rounding is

ignored.

Associated keywords: import, math.floor, round

TIME 2 CODE Python Programming guide

Levels 1-8 33

MATH.FLOOR

variable = math.floor(parameter)

Examples:

x = 65.83

x = math.floor(x)

Function: Rounds a number down to the nearest integer.

In the example above x would be assigned 65 as 0.5 rounding is

ignored.

Associated keywords: import, math.ceil, round

TIME 2 CODE Python Programming guide

Levels 1-8 34

MATH.PI

variable = math.pi

Examples:

x = math.pi

Function: Returns the constant pi as 3.141592653589793.

Associated keywords: import

TIME 2 CODE Python Programming guide

Levels 1-8 35

MATH.SQRT

variable = math.sqrt(parameter)

Examples:

x = math.sqrt(25)

x = math.sqrt(y)

Function: Returns the square root of a number.

Associated keywords: import

TIME 2 CODE Python Programming guide

Levels 1-8 36

OPEN

variable = open(filename, operation)

Examples:

my_file = open("mydata.txt", "r")

Command: Opens a serial text file for reading or writing data.

The first parameter is a filename that data is to be read from or

written to. The filename can be a variable and also include a file path.

The default path is the same folder that the .py program is stored in.

The second parameter is the operation to perform on the file:

"r" Read data from the file.

"w" Overwrite and existing data in the file.

"a" Append data to the end of the file.

Overwrite and append operations will create a file if one does not

already exist. A run-time error will occur if reading is attempted, and

the file does not exist.

The variable becomes what is known as a pipe or pointer to the file.

Files must always be opened before data can be read from or written

to the pipe.

Note a file can only be open for either reading or writing at any one

time. You cannot read and write to the same file at the same time.

Associated keywords: close, read, readline, write

TIME 2 CODE Python Programming guide

Levels 1-8 37

ORD

variable = ord(character)

Examples:

ascii_code = ord("A")

Function: Returns the ASCII code of a character.

All characters, including letters, numbers and symbols stored in strings

are actually stored in binary by the computer. The American Standard

Code for Information Interchange (ASCII) is one standard for encoding

characters in binary. To make it easier for humans these binary codes

can also be output in denary.

For example:

"A" = 65

"B" = 66

"C" = 67 etc.

Note that uppercase and lowercase letters have different codes.

Associated keywords: chr

TIME 2 CODE Python Programming guide

Levels 1-8 38

POP

list.pop(index)

Examples:

mylist.remove(2)

Method: Removes an index from a list.

The example above removes the item stored at index 2 from the list

called mylist. Remember that this will reduce the index of all other

elements stored after the index by -1.

Associated keywords: append, insert, remove

TIME 2 CODE Python Programming guide

Levels 1-8 39

PRINT

print(parameters)

Examples:

print("Hello World")

print(x)

Command: Outputs a value to the screen. The value can be any data

type: Boolean, integer, list, float, string.

Don’t forget that what you want to output must be enclosed in

brackets. Strings will need to be qualified by quotes.

Each print statement puts the output on a new line. You can prevent a

new line by concatenating end = "" to the output. E.g.

print("Hello", end = "")

print("World")

A single blank line, or the end of a line can be output with:

print()

Multiple parameters can be output on one line. Each parameter is

separated with a comma. The output will include an automatic space

between each parameter:

print("You are", age, "years old")

Associated keywords: format

TIME 2 CODE Python Programming guide

Levels 1-8 40

RANDOM.CHOICE

random.choice(list)

Examples:

letter = random.choice(["A", "B", "C"])

Function: Returns a random element from a list. This command must

be imported from the random library before use.

To generate random elements and not a deterministic sequence, this

command also requires random.seed() to be used once in the

program before random.choice.

Associated keywords: import, random.seed, random.shuffle

TIME 2 CODE Python Programming guide

Levels 1-8 41

RANDOM.RANDINT

random.randint(low_value, high_value)

Examples:

dice = random.randint(1, 6)

Function: Returns a random number between the low and high value

parameters inclusive. This command must be imported from the

random library before use.

To generate random numbers and not a deterministic sequence, this

command also requires random.seed() to be used once in the

program before random.randint.

Associated keywords: import, random.choice, random.seed,

random.shuffle

TIME 2 CODE Python Programming guide

Levels 1-8 42

RANDOM.SEED

random.seed(value)

Examples:

random.seed()

random.seed(1)

Command: Sets the seed to be used by the random number function.

This command must be imported from the random library before use.

Computers cannot generate random numbers because they can only

perform calculations. Instead, they use a calculation on a number

known as a seed to generate what looks like a random number to the

user. For example, the fractional part of the square root of 55 is

4161984871. If you didn’t know the algorithm and the seed value of

55, these digits would appear to be random. Python uses an algorithm

known as Mersenne Twister to generate random numbers.

By not specifying a value for the seed, the random number function

will use the time of day as the seed instead. Specifying a value will

ensure the random number function always generates the same

deterministic sequence of numbers.

It is important to use random.seed() once at the beginning of your

program to ensure you get random numbers. You should not need to

use this command more than once in your program.

Associated keywords: import, random.choice,

random.randint, random.shuffle

TIME 2 CODE Python Programming guide

Levels 1-8 43

RANDOM.SHUFFLE

random.shuffle(list)

Examples:

random.shuffle(mylist)

Method: Reorders the items in a list into a random order.

This command must be imported from the random library before use.

Associated keywords: import, random.choice, reverse,

sort

TIME 2 CODE Python Programming guide

Levels 1-8 44

RANGE

range(parameter, parameter, parameter)

Examples:

for counter in range(5):

for counter in range(5, 0, -1)

Command: Enumerates a set of numbers.

Used with the for command, range creates a set of numbers for the

iteration. For example, range(5) will produce the numbers 0, 1, 2, 3,

4. That’s five numbers starting at zero.

The set of numbers can be defined with additional parameters. For

example, range(5, 0, -1) will create a set of five numbers

starting at five in increments of -1. The set is 5, 4, 3, 2, 1.

The start, end and increment can be any values. An invalid set of

parameters that could never be completed, e.g. (5, 0, 1) will return an

empty set.

Associated keywords: for

TIME 2 CODE Python Programming guide

Levels 1-8 45

READ

variable = pipe.read()

Examples:

my_file = open("data.txt", "r")

data = my_file.read()

Method: Reads all the data from an open file.

The variable becomes all the data in the file. To read just one line at a

time, use readline instead.

The data will include a hidden end of line escape character. You

should always remove this with the strip command once the data

has been read.

Associated keywords: close, open, readline, split,

strip, write

TIME 2 CODE Python Programming guide

Levels 1-8 46

READLINE

variable = pipe.readline()

Examples:

my_file = open("data.txt", "r")

data = my_file.readline()

Method: Reads one line of data from an open file.

The variable becomes all the data in the file until the end of line

escape code is reached. To read the whole file at once, use read

instead.

The data will include a hidden end of line escape character. You

should always remove this with the strip command once the data

has been read.

This method is usually used with a while loop if you want to stop

reading once an item has been found, or with a for loop to read all the

data from a file.

For example:

my_file = open("data.txt", "r")

for line in my_file:

 print(line.strip())

Associated keywords: close, open, read, split, strip,

write

TIME 2 CODE Python Programming guide

Levels 1-8 47

REMOVE

list.remove(parameter)

Examples:

mylist.remove("Dave")

Method: Removes the first occurrence of the parameter from a list.

The example above removes the string "Dave" in the list called mylist.

Remember that this will reduce the index of all other elements stored

after this index by -1.

An error will occur if the parameter is not in the list, so this should be

checked with the commands if and in before using this command.

To remove all instances of the parameter without an error you would

need to use a while loop. E.g.

while "Dave" in mylist:

 mylist.remove("Dave")

Associated keywords: append, insert, pop

TIME 2 CODE Python Programming guide

Levels 1-8 48

REPLACE

variable = string.replace(string, string)

Examples:

sentence = "The quick brown fox"

new_sentence = sentence.replace("fox", "dog")

Method: Replaces all occurrences of one string with another.

In the example above, new_sentence would be assigned, "The quick

brown dog”.

Associated keywords: find

TIME 2 CODE Python Programming guide

Levels 1-8 49

RETURN

return expression

Examples:

def square(x):

 return x * x

y = square(5)

Command: Returns a value from a subprogram.

Subprograms that return values are called functions.

In the example above, the number 5 is passed into the function called

square and assigned to the parameter x. The variable is then

multiplied by itself and returned as the output from the function

square into the variable y which assigns it the value 25.

The return expression can be a Boolean, e.g. return True, a variable,

e.g. return total, a list or the result of a calculation.

It is possible to return more than one value in Python, each separated

with a comma, but many languages do not support this so it is

generally avoided in favour of returning a list.

Subprograms that do not return a value are called procedures.

Associated keywords: def

TIME 2 CODE Python Programming guide

Levels 1-8 50

REVERSE

list.reverse()

Examples:

mylist.reverse()

Method: Reverses the items in a list.

This is useful if you want the items in a list in descending order. Use

.sort() to initially sort the items and then reverse the order with

.reverse().

Associated keywords: sort, random.shuffle

TIME 2 CODE Python Programming guide

Levels 1-8 51

ROUND

variable = round(parameter, parameter)

Examples:

x = round(6.532234, 2)

x = round(y, 3)

Function: Rounds a number to a given number of decimal places using

the 0.5 rule. E.g. 6.2 would not be rounded up, whereas 6.6 would be.

Associated keywords: math.ceil, math.floor

TIME 2 CODE Python Programming guide

Levels 1-8 52

SORT

list.sort()

Examples:

mylist.sort()

Method: Sorts the items in a list into ascending order.

Python uses a Tim Sort to order the items in a list.

Associated keywords: reverse, random.shuffle

TIME 2 CODE Python Programming guide

Levels 1-8 53

SPLIT

list = string.split(string)

Examples:

mystring = "Hello,World"

mylist = mystring.split(",")

Method: Splits a string into a list.

In the example above, mylist would be assigned, ["Hello", "World"]

A new element is created each time the separator characters are

found in the string. In the example above, a comma is used to identify

where items should be split.

Split can be useful for inputting a single record from a CSV file.

Associated keywords: join

TIME 2 CODE Python Programming guide

Levels 1-8 54

STR

variable = str(parameter)

Examples:

x = str(6.5)

x = str(price)

Function: Casts a parameter to a string (sequence of alphanumeric

characters).

Different types of data are stored in different ways by the computer.

Although calculations must be performed on integers and real

numbers, inputs and outputs are always strings.

Don’t confuse the integer 6 with the string "6". They have different

binary codes inside the computer even though they look the same to

the user.

It can be necessary to convert or cast a number into a string before it

can be concatenated, used with string manipulation or format

commands.

Associated keywords: int, float

TIME 2 CODE Python Programming guide

Levels 1-8 55

STRIP

variable = string.strip(parameter)

Examples:

mystring = "Hello World "

mystring = mystring.strip()

Method: Removes whitespace and hidden escape characters from the

beginning or end of a string.

In the example above, the spaces would be removed from the end of

the string, but not between the words inside the string.

An optional string parameter can be specified if there are particular

characters to remove. For example, if the parameter was "Z" then any

leading and training "Z" characters would be removed.

This command is essential to use after reading data from a file to

ensure the hidden end of line/record characters are removed before

further processing. It can also be helpful as an initial step for pre-

processing inputs before validation.

Associated keywords: read

TIME 2 CODE Python Programming guide

Levels 1-8 56

TIME.SLEEP

time.sleep(value)

Examples:

time.sleep(5)

Method: Delays the next line of code executing for a given number of

seconds determined by the value.

This command must be imported from the time library before use.

Associated keywords: import

TIME 2 CODE Python Programming guide

Levels 1-8 57

TRY

try:

 indented code

except:

 indented code

else:

 indented code

finally:

indented code

Examples:

try:

my_file = open("data.txt", "r")

except FileNotFoundError:

my_file = open("data.txt", "w")

my_file.write(boilerplate)

file.close()

my_file = open("data.txt", "r")

print("New file created. ")

else:

 print("File opened successfully.")

TIME 2 CODE Python Programming guide

Levels 1-8 58

finally:

 print("Ready to read data from the file.")

Command: Handles run-time exception errors to prevent a program

from crashing unexpectedly.

There are some commands that can fail when a program is running

due to exceptional circumstances. For example, if a program reads a

data file but the user has deleted it or when attempting to write to a

file the secondary storage is full. In these cases, the program will

crash.

It is considered good practice to trap potential run-time errors with

what is known as exception handling techniques.

In the example above a file called data.txt is opened for reading, but if

the file does not exist a new file is created, and boilerplate data

written to it before it is opened. This ensures the program always has

data to read from the file.

The try command is used to denote the start of an exception handling

event.

If an exception occurs, the indented code in the except section will be

executed. There is no need to specify the type of error that can occur,

but it is considered good practice to do so. For example, except

FileNotFoundError will execute the indented section if the file cannot

be found. More than one except section can be used for multiple

events.

The else section executes if no error occurred.

The finally section executes regardless of whether an error occurred

or not.

TIME 2 CODE Python Programming guide

Levels 1-8 59

The try command should also be used for possible situations where a

division by zero could occur as this will also crash the program.

Associated commands: open, read, readline, write

TIME 2 CODE Python Programming guide

Levels 1-8 60

UPPER

Variable = string.upper()

Examples:

surname = sinput.upper()

Method: returns the string in uppercase (capital letters).

Associated keywords: islower, isupper, lower

TIME 2 CODE Python Programming guide

Levels 1-8 61

WHILE

while condition:

 indented code

Examples:

valid_input = False

while not valid_input:

 print("Enter your choice: ")

while choice < 0 or choice > 3:

 print("Enter your choice: ")

Command: Repeats the indented section of code until the condition is

not met.

Code to be executed must be indented. This is often the source of

many logic errors, so check your code is indented correctly.

Repeated sections of code are known as iterations or loops. Use a

while command when it is not known in advance how many iterations

will be required.

It is common to ensure the condition cannot be met before the first

iteration to ensure the indented code executes at least once.

It is good practice to comment before this command to explain the

purpose of the iteration or condition.

TIME 2 CODE Python Programming guide

Levels 1-8 62

More than one condition can be combined with logic operators and

brackets can be used to group conditions.

It is possible to include another if commands within an indented

section. This is known as nesting.

While loops are often used with indented input commands for

validation, ensuring that the user has entered a valid input before

continuing the program.

A special value that uses its presence as a condition to terminate a

loop is called a sentinel value.

Infinite loops can be created with while True: since true will

always be true.

Associated keywords: #, for, in

TIME 2 CODE Python Programming guide

Levels 1-8 63

WRITE

pipe.write(variable)

Examples:

my_file = open("data.txt", "w")

my_file.write("Hello World")

Method: Writes data to an open file.

If the file was opened with the "w" operation any existing data in the

file will be overwritten. If the file was opened with the "a" operation,

data will be appended to the end of the file without overwriting

existing data.

Note if you want the next item of data written to the file to be on a

new line, you must include the end of line escape code "\n".

It is considered good practice to prepare the data to be written in a

single variable and then write that data in one command.

For example:

data = item1 + "," + item2 + "\n"

my_file.write(data)

This will write variables item1 and item2 separated by a comma to the

file.

Associated keywords: close, open, read, readline, strip

TIME 2 CODE Python Programming guide

Levels 1-8 64

Appendix 1

Concatenation

x = "Hello" + " " + "World"

To concatenate means to join together. A comma can be used to

concatenate strings inside a print statement. A plus symbol needs to

be used outside of a print statement.

Numbers should be cast to strings before they are concatenated.

Comparison operators

== if x == y Is x the same as y? (equal)

!= if x != y Are x and y different? (not equal)

< if x < y Is x less than y?

<= if x <= y Is x less than or equal to y?

> if x > y Is x greater than y?

>= if x >= y Is x greater than or equal to y?

Note that a double equal is asking a question, a single equal assigns a

variable. E.g.

x == 6 means is x equal to 6?

x = 6 means x becomes the number 6.

TIME 2 CODE Python Programming guide

Levels 1-8 65

Logical operators

and if x > y and x > 6: Both conditions must be

true for the result to be

True.

or if x > y or x > 6: One of the conditions

must be true for the

result to be True.

not if not x: The condition must not

be met for the result to

be True.

Mathematical operators

+ x = 6 + 5 Addition

- x = 6 - 5 Subtraction

* x = 6 * 5 Multiplication

/ x = 6 / 5 Division

// x = 6 // 5 Integer (floor) division

** x = 6 ** 5 Exponentiation

% x = 5 % 5 Modulus

TIME 2 CODE Python Programming guide

Levels 1-8 66

String manipulation

Substrings

Many languages include commands left, mid and right to extract

characters from the left, middle or end of a string.

Extracting from the start of a string:

variable = "Hello"[0:2]

The variable would be assigned "He".

Extracting from the middle of a string:

variable = "Hello"[2:5]

The variable would be assigned "llo".

Extracting from the end of a string:

variable = "Hello"[-2:]

The variable would be assigned "lo".

Creating strings of characters

It is possible to use mathematical operators to create strings of

characters. For example:

variable = "@" * 5

The variable would be assigned "@@@@@".

TIME 2 CODE Python Programming guide

Levels 1-8 67

Command Index
.. 1

abs... 2

append .. 3

chr ... 4

close .. 5

copy .. 6

def ... 7

find .. 8

float ... 9

for ... 10

format ... 12

if .. 14

import ... 16

in ... 17

index ... 18

input .. 19

insert ... 20

int .. 21

isalpha ... 22

isalnum.. 23

TIME 2 CODE Python Programming guide

Levels 1-8 68

isdigit ... 24

islower .. 25

isupper .. 26

join .. 27

len ... 28

lower ... 29

match .. 30

math.ceil ... 32

math.floor ... 33

math.pi .. 34

math.sqrt .. 35

open .. 36

ord .. 37

pop .. 38

print .. 39

random.choice .. 40

random.randint ... 41

random.seed ... 42

random.shuffle ... 43

range ... 44

read ... 45

TIME 2 CODE Python Programming guide

Levels 1-8 69

readline ... 46

remove .. 47

replace .. 48

return .. 49

reverse .. 50

round .. 51

sort .. 52

split ... 53

str .. 54

strip ... 55

time.sleep ... 56

try .. 57

upper .. 60

while ... 61

write .. 63

