
TIME 2 CODE C# Programming guide

Level 6 1

//

// text

Examples:

// This is a comment

Double forward slash: A comment.

Comments are ignored by the computer and discarded when a

program is translated into machine code. They are used by

programmers to explain the purpose of sections of code. This is

helpful when you return to a program after a period of time, or when

you work in teams.

Comments are typically used:

● At the beginning of a program to explain its purpose.

● Before each method.

● Before each selection statement: if, else, switch, case.

● Before each iteration: for, while.

● To explain difficult to comprehend code.

● To remind the author why unusual approaches have been

taken.

For multiline comments, use /* */ like so:

/* first line of text

second line of text */

Associated keywords: static, if, switch, case, while, do

/ while, for

TIME 2 CODE C# Programming guide

Level 6 2

ADD

list.Add(parameter);

Examples:

my_list.Add("Dave")

Method: Adds the parameter to the end of a list.

The example above adds the string "Dave" to the list called my_list.

The parameter can be a value or variable. The new item is always

added to the end of the list and becomes the last item.

You can overwrite existing elements of a list by referring to their

index. E.g. my_list[2] = "Dave" will replace what is currently

stored in index 2.

Associated keywords: Insert, RemoveAt, Remove

TIME 2 CODE C# Programming guide

Level 6 3

ARRAY.INDEXOF

int variable = Array.IndexOf(arrayIdentifier,

searchItem);

Examples:

string[] names = {"Craig", "Dave"};

int index = Array.IndexOf(names, "Dave");

Method: Returns the index of where the search item can be found in

an array.

For example, if an array myArr contained: ["A", "B", "C", "D"]

then Array.IndexOf(myArr, "C") would return 2 because the

item "C" is stored at index 2. Remember that arrays are zero-indexed

which means the first item is stored at index 0. The method only

returns the first occurrence of an item in an array.

If the item is not in the array this method will return -1. This could be

used to check if an item exists within an array and negates the need

for a searching algorithm.

If you want to find more than one occurrence in the array, you should

consider using a search algorithm instead. For example, a linear

search that uses a for loop to iterate over all the items in an array.

TIME 2 CODE C# Programming guide

Level 6 4

ARRAY.REVERSE

Array.Reverse(arrayIdentifier, optionalStartIndex,

optionalLength);

Examples:

Array.Reverse(myArray);

Array.Reverse(myArray, 1, 4);

Method: Reverses the sequence of elements in a one-dimensional

array.

If only a subset of the array needs to be reversed, use the

optionalStartIndex and optionalLength parameters. The

optionalStartIndex parameter specifies the start of the subset,

and the optionalLength parameter specifies the number of

elements of the subset to reverse.

If the method is run without specifying a start index and length, then

the entire array will be reversed.

This is useful if you want the items in a list in descending order. Use

Array.Sort() to initially sort the items and then reverse the order

with Array.Reverse().

Associated keywords: Array.Sort

TIME 2 CODE C# Programming guide

Level 6 5

ARRAY.SORT

Array.Sort(arrayIdentifier);

Examples:

Array.Sort(myArray);

Method: Sorts the items in an array into ascending or alphabetical

order.

C# uses an introspective sort algorithm to order the items in an array.

Associated keywords: Array.Reverse

TIME 2 CODE C# Programming guide

Level 6 6

COMPARETO

StringExp.CompareTo(StringExp)

Examples:

"dave".CompareTo("craig")

if ("harry".CompareTo("anna") == -1) {}

Method: returns -1 if the Unicode value of the first string is less than

the second’s Unicode value, 0 if the first string is equal to the second,

or 1 if the Unicode value of the first string is greater than the second’s

Unicode value.

As C# does not allow strings to be compared using < or >, the

CompareTo method must be used. The CompareTo method can also

be used for numeric types, but it may be easier to use comparison

operators for these instead.

For example, "a".CompareTo("b") would return -1, because the

Unicode value of "a" is 97, which is less than the Unicode value of "b",

which is 98.

It can be used as a condition in selection statements.

Associated keywords: if, switch

TIME 2 CODE C# Programming guide

Level 6 7

CONSOLE.READLINE

variable = Console.ReadLine(parameter);

Examples:

Console.Write("Enter your forename: ");

string forename = Console.ReadLine();

Method: returns an input from the keyboard.

Inputs from the keyboard allow user interaction with your program.

Inputs are always sequences of alphanumeric characters called strings

terminated when the user presses the enter key.

The Console.Write() line is optional but informs the user what

data they are expected to enter, so often it is used directly before

Console.ReadLine() is used. Console.Write() is used instead

of Console.WriteLine() because this allows the user to type on

the same line as the prompt.

It is common to add an extra space at the end of the prompt to

separate the prompt and the input.

Remember to do calculations on the input, the input data will need to

be cast to an integer or double.

TIME 2 CODE C# Programming guide

Level 6 8

CONSOLE.WRITE

CONSOLE.WRITELINE

Console.Write(parameter);

Console.WriteLine(parameter);

Examples:

Console.Write("Hello World")

Console.Write(x)

Console.WriteLine("Goodbye Venus")

Console.WriteLine(x)

Command: Outputs a value to the screen. The value can be any data

type: Boolean, integer, list, float, string.

Don’t forget that what you want to output must be enclosed in

brackets. Strings will need to be qualified by quotes.

Console.Write() does not begin a new line after outputting its

parameter to the screen, whereas Console.WriteLine() does. Often

Console.Write() is used before using Console.Readline(), to inform the

user of what they are expected to enter. E.g.

Console.Write("Enter a planet: ");

string planet = Console.ReadLine();

A single blank line, or the end of a line can be outputted with:

Console.WriteLine();

TIME 2 CODE C# Programming guide

Level 6 9

Multiple parameters of the same data type can be outputted on one

line. Each parameter is separated with an addition symbol. The output

will not include an automatic space between each parameter, so you

will need to take this into account by adding blank spaces as shown:

print("You are " + age + " years old")

Associated keywords: Appendix: Interpolated strings

TIME 2 CODE C# Programming guide

Level 6 10

CONTAINS

list.Contains(variable);

Examples:

List<string> names = new List<string>() {"Craig ",

"Dave"};

if (names.Contains("Dave"))

if (y.Contains(x))

while (y.Contains(x))

Method: Returns whether a constant or a variable is contained within

a list.

The Contains method is very useful for checking if an item exists

within a list and negates the need for a searching algorithm. It can also

be used to check whether a substring is in a string.

It can be used as a condition for selection and iteration commands.

Note that the Contains method is case sensitive.

Returns True if the variable is in the list or False if not.

Associated keywords: if, while, do / while

TIME 2 CODE C# Programming guide

Level 6 11

CONVERT.TODOUBLE

double variable = Convert.ToDouble(parameter)

Examples:

double x = Convert.ToDouble("5");

double y = Convert.ToDouble(6);

double z = Convert.ToDouble(a);

Method: Casts a parameter to a double (real) number.

Different types of data are stored in different ways by the computer.

Inputs taken from the keyboard are always sequences of

alphanumeric characters called strings. These sequences of characters

are stored as numbers by the computer using a standard such as ASCII

or Unicode. To do calculations on the input, it first needs to be

converted from a string to a number, or from “5.6” to 5.6. This is

known as casting.

Whole numbers with no fractional part are known as integers.

Numbers with a fractional part (decimal places) are known as doubles,

real numbers, reals, floats or floating point numbers.

A run-time error will occur if the parameter cannot be cast to a

double.

Associated keywords: Convert.ToInt32, Convert.ToString

TIME 2 CODE C# Programming guide

Level 6 12

CONVERT.TOINT32

int variable = Convert.ToInt32(parameter);

Examples:

int x = Convert.ToInt32("5");

int x = Convert.ToInt32(6.5);

int x = Convert.ToInt32(y);

Method: Casts a parameter to the int data type, which can store

whole numbers from -(2³¹−1) to 2³¹−1.

Different types of data are stored in different ways by the computer.

Inputs taken from the keyboard are always sequences of

alphanumeric characters called strings. These sequences of characters

are stored as numbers by the computer using a standard such as ASCII

or Unicode. The input string "5" (strings are qualified by quotes) is

stored as the number 53. To do calculations on the input, it first needs

to be converted from a string to a number, or from 53 to 5. This is

known as casting.

Whole numbers with no fractional part are known as integers.

Numbers with a fractional part (decimal places) are known as floating

points, floats, real numbers or reals. Using Convert.ToInt32 to cast

a float will round the float using banker’s rounding to the nearest

integer, and remove the fractional component.

Banker's rounding is where midpoint values are rounded to the

nearest even number. For example, both 3.75 and 3.85 round to 3.8.

TIME 2 CODE C# Programming guide

Level 6 13

It's worth noting that if a character is passed into this method, it will

be converted to the ASCII value of the character. For example, 'a' will

be converted to 97 when passed into this method.

Associated keywords: Convert.ToDouble, Convert.ToString

TIME 2 CODE C# Programming guide

Level 6 14

COUNT

parameter.Count;

Examples:

int x = myList.Count;

Property: Returns the number of indexes in the parameter.

Remember the number of indexes includes the first index which is

index 0.

The parameter can be a list in which case the number of elements is

returned. This command can also be used for various collection types

in C#, such as dictionaries.

Associated keywords: Length

TIME 2 CODE C# Programming guide

Level 6 15

DO / WHILE

do

{

// code block to be executed

}

while (condition);

Examples:

bool valid_input = false;

do

{

 Console.Write("Enter your choice ");

 string choice = Console.ReadLine();

}

while (!valid_input);

int i = 1;

do

{

 Console.WriteLine(i);

TIME 2 CODE C# Programming guide

Level 6 16

 i++;

}

while (i < 11);

Command: repeats the indented section of code until the condition is

met.

This loop will execute the code block first, then check if the condition

is true, then it will repeat the code inside the loop for as long as the

condition is true.

Code to be executed must be inside the curly brackets and indented.

This is often the source of many logic errors, so check your code is

indented correctly.

Repeated sections of code are known as iterations or loops. Use a

do/while command when it is not known in advance how many

iterations will be required.

It is good practice to comment before this command to explain the

purpose of the iteration.

More than one condition can be combined with logic operators and

brackets can be used to group conditions.

It is possible to include another do/while command within an

indented section. This is known as nesting.

Associated keywords: //, for, foreach, while

TIME 2 CODE C# Programming guide

Level 6 17

FOR

for (initialisation; condition; change)

{

// code block to be executed

}

Examples:

for (int counter = 0; counter < 5; counter++)

{

 Console.WriteLine(counter);

}

for (int counter = 5; counter >= 0; counter--)

{

 Console.WriteLine(counter);

}

Command: Repeats the indented section of code a given number of

times.

The initialisation statement is executed first and only once. Usually, it

sets a variable before the loop starts. The condition statement defines

the condition for the loop to run – if it is true, the loop will repeat the

TIME 2 CODE C# Programming guide

Level 6 18

code inside it, otherwise the loop will end. The change statement

changes the variable initialised in the initialisation statement at the

end of every iteration of the loop.

Code to be executed must be inside the curly brackets. This is often

the source of many logic errors, so check your code is correct.

Repeated sections of code are known as iterations or loops. Use a for

command when you want to repeat a known number of times.

It is good practice to comment before this command to explain the

purpose of the iteration.

It is possible to include another for loop within an for loop. This is

known as nesting.

Although the functionality of a for command can be replicated with a

while command it is usually considered good practice to use a for loop

for finite iterations.

As a for command will always iterate a finite number of times, to

maximise the efficiency of an algorithm you should consider if a while

loop or an alternative command could be used instead to terminate

the iteration early. It is possible to terminate a for loop before it is

complete with a break command, but this is not considered good

practice because it creates more than one exit point for the command

which increases the complexity of testing. The use of break should

usually be avoided.

Associated keywords: //, foreach, while, do / while

TIME 2 CODE C# Programming guide

Level 6 19

FOREACH

foreach (type variable in array)

{

// code block to be executed

}

Examples:

string[] names = {"Craig", "Dave"};

foreach (string name in names)

{

 Console.WriteLine(name);

}

Command: Loops through each element of an iterable data type (such

as an array, list, or string), with each iteration giving variable the

value of the next element in the iterable data type.

This can also be achieved with a for loop, although it is generally

considered that a foreach loop is more readable and easier to

understand.

It is good practice to comment before this command to explain the

purpose of the iteration.

Associated keywords: //, for, while, do / while

TIME 2 CODE C# Programming guide

Level 6 20

GETLENGTH

arrayIdentifier.GetLength(dimension);

Examples:

my_array.GetLength(0)

Method: returns the number of elements in the specified dimension

of the array.

For example, my_array.GetLength(0) will return the number of

elements in the first dimension of the array.

The dimension specified must be zero-based which means the first

dimension is stored at dimension 0.

If the dimension specified is less than 0, or greater than or equal to

the number of dimensions in the array, an exception will occur.

Associated keywords: Length

TIME 2 CODE C# Programming guide

Level 6 21

IF

if (condition)

{

 // code block to be executed

}

else if (condition)

{

 // code block to be executed

}

else

{

// code block to be executed

}

Examples:

if (x == y)

{

 Console.WriteLine("The value of x is the same

as y");

}

else if (x < y)

{

TIME 2 CODE C# Programming guide

Level 6 22

 Console.WriteLine("The value of x is less

than y");

}

else

{

 Console.WriteLine("The value of x is greater

than y");

}

Command: Selects which code branch to execute next depending on

the outcome of a condition.

The condition requires two variables or constants to be compared

with mathematical or logic operators (see appendix). More than one

condition can be combined with logic operators and brackets can be

used to group conditions.

E.g.

if ((x > y) && (x > 6)) {}

Note that you should not use if (x > y > 6) as it will not work
as you expect. Instead, be explicit about which two items of data are
being compared in each condition.

The result of an if command is always either true or false.

That means you can also use a shorthand for Boolean conditions. E.g.

if (valid) {} is the same as if (valid == true) {}

if (!valid) {} is the same as if (valid == false)
{}

TIME 2 CODE C# Programming guide

Level 6 23

The else if section is an optional part of the command to include
alternative conditions. You can include as many additional else if

sections as you need but consider using the command switch
instead if you require more than one else if section.

The else section is an optional part to execute if none of the

conditions are met, including those in else if sections.

Code to be executed for each section must be inside the curly
brackets. This is often the source of many logic errors, so check your
code is in the correct place.

It is good practice to comment each section of this command to
explain the purpose of each condition.

It is possible to include another if command within an indented
section. This is known as nesting.

Associated keywords: //, switch

TIME 2 CODE C# Programming guide

Level 6 24

INSERT

list.Insert(index, parameter);

Examples:

myList.Insert(2, "Dave");

Method: Inserts the parameter into a list at the specified index.

The example above inserts the string "Dave" into the list called myList

at index 2. The indexes of the existing items at index 2 and above are

incremented. The parameter can be a value or a variable.

You can overwrite existing elements of a list by referring to their

index. E.g. myList[2] = "Dave" will replace what is currently

stored in index2.

Associated keywords: Add, Remove, RemoveAt

TIME 2 CODE C# Programming guide

Level 6 25

LENGTH

int variable = identifier.Length;

Examples:

int x = "ABC".Length;

int x = my_array.Length;

Property: returns the number of indexes in the object specified.

Remember the number of indexes includes the first index which is

index 0.

The parameter can be a string, in which case the number of characters

is returned, or an array in which case the number of elements is

returned.

If the array is multidimensional, Length gives the total number of

elements across all dimensions. To get the number of elements in a

specific dimension, GetLength can be used.

Associated keywords: GetLength, Count

TIME 2 CODE C# Programming guide

Level 6 26

MATH.ABS

Math.Abs(parameter);

Examples:

int x = Math.Abs(-5);

int x = Math.Abs(y);

Method: Returns the absolute value of the parameter.

The absolute value is a positive value. For example, the absolute value

of -6 is 6. This method is useful for turning a negative number into a

positive number.

It can also be useful to swap a number from positive to negative or

negative to positive. This can be achieved with x = -x.

TIME 2 CODE C# Programming guide

Level 6 27

MATH.CEILING

Math.Ceiling(parameter);

Examples:

double x = 65.23;

x = Math.Ceiling(x);

Method: Rounds the parameter up to the nearest integer.

In the example above x would be assigned as 66.

Associated keywords: Math.Floor, Math.Round

TIME 2 CODE C# Programming guide

Level 6 28

MATH.FLOOR

Math.Floor(parameter);

Examples:

double x = 65.83;

x = Math.Floor(x);

Method: Rounds a number down to the nearest integer.

In the example above x would be assigned 65.

Associated keywords: Math.Ceiling, Math.Round

TIME 2 CODE C# Programming guide

Level 6 29

MATH.PI

double variable = Math.PI;

Examples:

double x = Math.PI;

Field: Returns the constant pi as 3.1415926535897931

TIME 2 CODE C# Programming guide

Level 6 30

MATH.POW

Math.Pow(base, exponent);

Examples:

double x = Math.Pow(8, 2);

Method: Returns the result of the first parameter (the base) raised to

the power of the second parameter (the exponent).

Both parameters are required, if you don’t specify each of them then

you'll encounter a compilation error in your code.

In the example above, 8 will be raised to the power of 2, which will

give the result of 64.

TIME 2 CODE C# Programming guide

Level 6 31

MATH.ROUND

Math.Round(requiredParameter1,

optionalParameter2, optionalParameter3)

Examples:

double x = Math.Round(6.532234, 2);

double x = Math.Round(y, 3,

MidpointRounding.AwayFromZero);

Method: Rounds a number to the nearest integer or to a particular

number of decimal places.

The first parameter must be the number to round. If this number is a

double, this method will return a double. Likewise, if this number is a

decimal, this method will return a decimal.

The second parameter specifies the number of decimal places in the

output. By default, this is 0.

The third parameter specifies the rounding strategy to be used. These

include MidpointRounding.AwayFromZero, where Midpoint

values are rounded to the next number away from zero. For example,

3.75 rounds to 3.8 and 3.85 rounds to 3.9.

Another rounding technique is MidpointRounding.ToEven,

where midpoint values are rounded to the nearest even number. For

example, both 3.75 and 3.85 round to 3.8. By default, this is

MidpointRounding.ToEven.

TIME 2 CODE C# Programming guide

Level 6 32

The first parameter is required, while the second and third

parameters are optional.

Associated keywords: Math.Ceiling, Math.Floor

TIME 2 CODE C# Programming guide

Level 6 33

MATH.SQRT

Math.Sqrt(parameter)

Examples:

int x = Math.Sqrt(25);

x = Math.Sqrt(y);

Method: Returns the square root of a specified number.

This method takes one parameter of type double. A positive (double)

value will be returned, unless the parameter is negative or NaN (not a

number), in which case NaN will be returned. If the parameter is

PositiveInfinity, the function will return PositiveInfinity.

TIME 2 CODE C# Programming guide

Level 6 34

NEXT

variable.Next(optionalParameter, optionalParameter)

Examples:

Random random_generator = new Random();

int x = random_generator.Next();

int y = random_generator.Next(100);

int dice = rand.Next(1, 6);

Method: Returns a random integer. A random number generator must

be instantiated before using it, as shown in the example section

above. If neither of the optional parameters are specified, a non-

negative random integer will be returned.

If one of the parameters is specified, this parameter is the upper

boundary of the random number to be generated. A non-negative

random integer that is less than the value of this parameter will be

returned. If this parameter is specified as a negative number, an

exception will be raised.

Specifying both parameters will return a random integer that is within

a range. The first parameter will be the (inclusive) lower bound of the

random number returned, and the second parameter will be the

(exclusive) upper bound of the random number returned – it must be

greater than or equal to the lower bound. Any parameters specified

should be integers.

Associated keywords: Random

TIME 2 CODE C# Programming guide

Level 6 35

RANDOM

Random variable = new Random(optionalSeed);

Examples:

Random random_generator1 = new Random();

Random random_generator2 = new Random(1);

Constructor: Initialises a new instance of the Random class using a

seed value.

Computers cannot generate random numbers because they can only

perform calculations. Instead, they use a calculation on a number

known as a seed to generate what looks like a random number to the

user. For example, the fractional part of the square root of 55 is

4161984871. If you didn’t know the algorithm and the seed value of

55, these digits would appear to be random.

If a value for the seed is not specified, the time of day will be used by

default. Specifying a value will ensure the random number function

always generates the same deterministic sequence of numbers. The

seed value should be an integer, and if a negative seed value is used,

the absolute value of the number is used.

This constructor must be used before trying to generate random

numbers.

Associated keywords: Next

TIME 2 CODE C# Programming guide

Level 6 36

REMOVE

list.Remove(parameter);

Examples:

myList.Remove("Dave");

Method: Removes the first occurrence of the parameter from a list.

If the element is found and removed, the method returns true,

otherwise it returns false.

The example above removes the string "Dave" from the list called

myList. Remember that this will reduce the index of all other elements

stored after this index by -1, as well as reducing the size of the list by

-1.

To remove all instances of the parameter without an error you would

need to use a while loop. E.g.

while (myList.Contains("Dave")) {

 myList.Remove("Dave");

}

Associated keywords: Add, Insert, RemoveAt

TIME 2 CODE C# Programming guide

Level 6 37

REMOVEAT

list.RemoveAt(index);

Examples:

myList.RemoveAt(2);

Method: Removes an element from a list at a specified index.

The example above removes the item stored at index 2 from the list

called myList. Remember that this will reduce the index of all other

elements stored after the index by -1, as well as reducing the size of

the list by -1.

Associated keywords: Add, Insert, Remove

TIME 2 CODE C# Programming guide

Level 6 38

RETURN

return expression

Examples:

static int square (int x)

{

return x * x;

}

y = square(5);

Command: Returns a value from a method.

Subprograms that return values are called functions.

In the example above, the number 5 is passed into the method called

square and assigned to the parameter x. The variable is then

multiplied by itself and returned as the output from the function

square into the variable y which assigns it the value 25.

The return expression can be a Boolean, e.g. return True, a variable,

e.g. return total, a list or the result of a calculation. However, you

must return an expression of the same type that is named in the

subprogram definition.

If you need to return more than one value, you will need to return a

list or array.

Methods that do not return a value are known as void methods.

TIME 2 CODE C# Programming guide

Level 6 39

REVERSE

list.Reverse(optionalStartIndex, optionalLength);

Examples:

myList.Reverse();

myList.Reverse(1, 4)

Method: Reverses the items in a list.

If only a subset of the list needs to be reversed, use the

optionalStartIndex and optionalLength parameters. This allows you to

specify the starting index and number of elements from that starting

index of the list to reverse.

If the method is run without specifying a start index and length, then

the entire list will be reversed.

This is useful if you want the items in a list in descending order they’ve

been sorted in ascending order. Use .Sort() to initially sort the

items and then reverse the order with .Reverse().

Associated keywords: Sort

TIME 2 CODE C# Programming guide

Level 6 40

SORT

list.Sort();

Examples:

myList.Sort();

Method: Sorts the items in a list into ascending order.

C# uses a Quick Sort to order the items in a list.

Associated keywords: Reverse

TIME 2 CODE C# Programming guide

Level 6 41

STATIC

static type identifier (parameters) {}

Examples:

static int square (int x)

{

 x = x * x;

return x;

}

Command: Defines a new Method. Methods are also called

subprograms and subroutines.

Code must be contained within the curly brackets. You cannot use

spaces in the identifier name of the method. It is common to use

underscores to separate words in the name of the method instead.

Don't forget the opening curly bracket at the end of this command,

and the closing curly bracket after you have finished defining the

method’s code.

Methods can be void, meaning that they do not return a value.

Methods are used to structure a program into smaller more

manageable parts. This is known as problem decomposition. If your

method is a procedure that does not return a value, then instead of

writing a data type in the definition, write the word void instead.

TIME 2 CODE C# Programming guide

Level 6 42

Methods are used to create reusable program components. If your

method is a function which returns a value, then you’ll need to specify

the data type which it returns in the method definition, where we’ve

written type.

Methods avoid unnecessary code duplication and make the code

easier to read which also makes finding errors in code, called

debugging easier.

Associated keywords: return

TIME 2 CODE C# Programming guide

Level 6 43

SWITCH

switch(variable)

{

case value:

// code block

break;

default:

// code block

break;

}

Examples:

switch (day_name)

{

case "Thu":

case "Fri":

case "Sat":

Console.WriteLine("Open 10-5pm");

 break;

 case "Sun":

TIME 2 CODE C# Programming guide

Level 6 44

Console.WriteLine("Open 11-3pm");

 break;

default:

 Console.WriteLine("Closed.");

 break;

}

Statement: An alternative to the if/else if/else structure that is used to

select one of many code blocks to be executed. Switch is considered a

better command to use than the if/else if/ else structure when there

are many outcomes because it is more readable for multiple values.

Don’t forget the colon after each case.

You can have as many case statements as you need, and each one

should include a comment.

It works by first evaluating the switch expression once, then

comparing the value of the expression with the values of each case. If

there is a match, the associated block of code is executed.

The break keyword is used at the end of each case block so that

when the match is found, and code execution inside of that block is

finished, it breaks out of the switch block.

default: is the equivalent to else and captures any value that was

not matched.

Associated keywords: //, if

TIME 2 CODE C# Programming guide

Level 6 45

USING

using namespace;

Examples:

using System;

using System.Collections.Generic;

Command: Includes additional namespaces in your program.

In C#, namespaces are used to organise and group related objects. For

example, the System namespace includes fundamental objects, such

as Console and Math.

The using command allows you to access objects in different

namespaces.

Remember that to use lists in your program, you have to make sure

the System.Collections.Generic namespace is included in your

program by writing using System.Collections.Generic at the

top of your program.

TIME 2 CODE C# Programming guide

Level 6 46

WHILE

while (condition)

{

// code block to be executed

}

Examples:

bool valid_input = false;

while (!valid_input)

{

Console.Write("Enter your choice: ");

}

while (choice < 0 || choice > 3)

{

Console.Write("Enter your choice: ");

}

Command: Repeats the indented section of code until the condition is

not met.

Code to be executed must be inside the curly brackets. This is often

the source of many logic errors, so check your code is in the right

place.

TIME 2 CODE C# Programming guide

Level 6 47

Repeated sections of code are known as iterations or loops. Use a

while command when it is not known in advance how many iterations

will be required.

It is common to ensure the condition cannot be met before the first

iteration to ensure the indented code executes at least once.

It is good practice to comment before this command to explain the

purpose of the iteration or condition.

More than one condition can be combined with logic operators and

brackets can be used to group conditions.

It is possible to include another if commands within an indented

section. This is known as nesting.

While loops are often used with indented input commands for

validation, ensuring that the user has entered a valid input before

continuing the program.

A special value that uses its presence as a condition to terminate a

loop is called a sentinel value.

Infinite loops can be created with while (true) since true will

always be true.

Associated keywords: //, for, foreach, do / while

TIME 2 CODE C# Programming guide

Level 6 48

Appendix 1

Variable assignment

type identifier;

type identifier = value;

You can use the above syntax to define a variable, where type is the

data type of the value it holds, and identifier is the variable name –

this cannot contain any spaces, so often underscores are used to

separate words instead. You may declare a variable without giving it

any contents (as shown in the first example), or by using an equals

sign and specifying an initial value. The different data types are listed

below.

int A whole number, without any
decimal places

double A floating-point number or
decimal

char A single character, wrapped in
single quotes.

string A combination of characters
stored as text, wrapped in double
quotes

bool One of two states: true or false

To change the value stored in a variable after its declaration, you do

not need to state the type. Just state the variable’s identifier and the

new value you would like it to store.

identifier = value;

TIME 2 CODE C# Programming guide

Level 6 49

Constants

const type identifier = value;

If you don’t want the value of a variable to be changed or overwritten,

you can use the const keyword in front of the variable type. Once you

have done this, the variable will be read-only, and its contents cannot

be changed later in the program.

You cannot declare a constant variable without assigning the value.

String manipulation

Concatenation

string x = "Hello" + " " + "World"

To concatenate means to join together.

Numbers should be cast to strings before they are concatenated.

Creating strings of characters

It is possible to create strings of repeated characters using the

following syntax.

string variable = new string('@', 5);

The variable would be assigned "@@@@@". The first parameter is

the character which is to be repeated, the second parameter is the

number of times that it should be repeated.

Comparison operators

== if x == y Is x the same as y? (equal)

!= if x != y Are x and y different? (not equal)

< if x < y Is x less than y?

TIME 2 CODE C# Programming guide

Level 6 50

<= if x <= y Is x less than or equal to y?

> if x > y Is x greater than y?

>= if x >= y Is x greater than or equal to y?

Note that a double equal is asking a question, a single equal assigns a

variable. E.g.

x == 6 means is x equal to 6?

x = 6 means x becomes the number 6.

Logical operators

and if x > y && x > 6: Both conditions must be
true for the result to be
True.

or if x > y || x > 6: One of the conditions
must be true for the
result to be True.

not if ! x: The condition must not
be met for the result to
be True.

TIME 2 CODE C# Programming guide

Level 6 51

Mathematical operators

+ x = 6 + 5 Addition

- x = 6 - 5 Subtraction

* x = 6 * 5 Multiplication

/ x = 6 / 5 Division

Floating-point division is
performed when the data type is a
double.

** Math.Pow(6, 5) Exponentiation

See the dedicated page in the
main body of this guide for details
on how to use Math.Pow.

% x = 5 % 5 Modulus

Interpolated strings

string name = "Dave";

string message = $"Hello, {name}";

string result = $"The sum of {x} and {y} is {x +

y}.";

Interpolated strings allow you to format a string for output. As an

alternative to concatenation, interpolation provides more options to

embed expressions and manipulate variables used in the output.

To create an interpolated string, use the $ symbol before quotation

marks. You can then include expressions inside curly brackets {} within

the string.

TIME 2 CODE C# Programming guide

Level 6 52

Interpolation can also be used to format numerical values. This is

often by writing :[format specifier][precision

specifier] after the value to format. The format specifier is an

alphabetical character which specifies the type of number format, for

example currency. The precision specifier is optional, and specifies the

number of decimal places the number should be formatted to.

The below table contains six common format specifiers, what they are

used for and example usage.

C Currencies $"{4.5675:C2}" $4.47

F Fixed point numbers $"{43.896:F2}" 43.90

N Numbers – adds in
separators

$"{1758:N2}" 1,748.00

P Percentages $"{0.3986:P2}" 39.86 %

D Decimals – adds in
leading zeros

$"{34:D4}" 0034

E Exponential
(scientific) format

$"{1234.56:E2}" 1.23E+003

TIME 2 CODE C# Programming guide

Level 6 53

1D arrays

An array is a data structure that holds a collection of elements of the

same type. Each element in the array has an index, which is its

position in the array, and each element can be accessed by its index.

Arrays are zero-indexed, meaning that the index of the first element in

an array is 0, the second element is 1, and so on.

Once an array is created, its size cannot be changed.

To declare a new 1D array, you can use the following syntax:

elementDataType[] identifier = new

elementDataType[arrayLength];

For example, the below would declare a 1D array to store 5 integers:

int[] array1 = new int[5];

Once an array is declared, you can then insert values into it.

You can also declare a new 1D array and set array element values in

one line, which could be useful if the array is not very long.

elementDataType[] identifier = [element1, element2,

…];

For example, the below would declare an array of the numbers from

one to five.

int[] array2 = [1, 2, 3, 4, 5];

TIME 2 CODE C# Programming guide

Level 6 54

1D lists

A list is a collection of elements of the same data type. Like arrays,

each element has an index representing its position in the list.

Lists are dynamic, meaning that their size can change as a program is

running. They are part of the Systems.Collections.Generic namespace,

so to use lists in a program you have to include it:

using Systems.Collections.Generic;

To declare a new list, you can use the following syntax:

List<elementDataType> identifier = new

List<elementDataType>();

For example, the below would declare and initialise a new list of

names:

List<string> names = new List<string>;

You can then add elements to this list using commands such as Add.

If you already know some elements which you want to add, you can

initialise the list with these elements:

List<elementDataType> identifier = new

List<elementDataType> {element1, element2, … };

For example, you could create a list of names like so:

List<string> names = new List<string> {"Craig",

"Dave"};

Lists are dynamic, so it is possible to add further elements to the list.

TIME 2 CODE C# Programming guide

Level 6 55

Arrays vs Lists

It can be hard to know whether to use an array or a list in your

program.

Remember that lists are dynamic (their length can change), whereas

arrays have a fixed size. For example, an array might be suitable for

storing days of the week, as its length (7) is fixed and known in

advance. A list might be more suitable for recording user inputs,

where the number of inputs is not known in advance.

Lists have more built-in methods, such as Add and Remove, which can

make it easier to work with collections of data. However, arrays are

generally more memory-efficient than lists, so if your collection size is

fixed and performance is a priority, an array may be more suitable.

It can be confusing to know which commands are for lists and which

are for arrays. The below table shows a brief description of common

commands, and the list and array commands.

TIME 2 CODE C# Programming guide

Level 6 56

Description List keyword Array keyword

Check if an
element is in a
collection

.Contains(); Use
Array.IndexOf();
– returns -1 if
element is not in
array.

Insert an element .Insert(); n/a

Find the length of a
collection

.Count; .Length;

Remove an
element at a
certain index

.RemoveAt(); n/a

Remove an
element

.Remove(); n/a

Find the position of
an element

.IndexOf(); Array.IndexOf();

Reverse the
elements

.Reverse(); Array.Reverse();

Sort the elements .Sort(); Array.Sort();

Add an element .Add(); n/a

TIME 2 CODE C# Programming guide

Level 6 57

Shuffling elements in an array

If you want to shuffle the elements in an array, it’s recommended to

create a helper function as shown below:

static string[] shuffle(string[] list_to_shuffle)

{

 int n = list_to_shuffle.Length;

 while (n > 1)

 {

 n--;

 int k = random_generator.Next(n + 1);

 string value = list_to_shuffle[k];

 list_to_shuffle[k] = list_to_shuffle[n];

 list_to_shuffle[n] = value;

 }

 return list_to_shuffle;

}

This method uses the Fisher-Yates (also known as Knuth) shuffle

algorithm. This algorithm starts from the last element of an array, and

then randomly selects an element from the unshuffled portion of the

array. These elements are swapped, and this process repeats until all

the elements have been shuffled.

TIME 2 CODE C# Programming guide

Level 6 58

Command Index
// ... 1

Add .. 2

Array.IndexOf .. 3

Array.Reverse .. 4

Array.Sort .. 5

CompareTo ... 6

Console.ReadLine .. 7

Console.Write Console.WriteLine ... 8

Contains .. 10

Convert.ToDouble ... 11

Convert.ToInt32 .. 12

Count .. 14

Do / While ... 15

For .. Error! Bookmark not defined.

Foreach ... 19

GetLength ... 20

If ... Error! Bookmark not defined.

Insert ... 24

Length ... 25

Math.Abs... 26

TIME 2 CODE C# Programming guide

Level 6 59

Math.Ceiling .. 27

Math.Floor .. 28

Math.Pi ... 29

Math.Pow.. 30

Math.Round .. 31

Math.Sqrt .. 33

Next... 34

Random ... 35

Remove .. Error! Bookmark not defined.

RemoveAt ... 37

Return .. Error! Bookmark not defined.

Reverse ... 38

Sort ... 40

Static ... 41

Switch ... 43

Using ... 45

While ... 46

